Playboo

Values and strategies for
successful product teams

TABLE OF CONTENTS

INtrodUCtiont e 3
Organization of this Book i 3
Digital Product Projects e 6
Kick-Off Meetingooiii i ettt 8

SO UD oo e 8
Product Strategy ... e 9
Mission Statementand KPIs i 10

Personas ... s 11

Product Designii it s 12
Feature Concepts Workshop ...t 13

User Interface Design Foundationcivun. 15

Increment Planning e 16

Product Developmentt i i i 17
Growing a Foundation i 18

Evaluation i s 18
eration ...t e 18
Development ProCessii it ettt 20
erationst e 20

Roles ..o e 21

lteration Preparation i 23

ISSUES . 25

SPIKES 27

[teration Planningttt i 28

RedPenguin playbook 1

lteration EXeCULION ... oot e e e 29

Communicationot s 30
Engineering ... e 31
Feature Branches and Pull Requests 31

Commits ... 32

PullRequestsciiiiiiiiiiiiiiiiiinn 32

Preview Systems i 33

Reviews s 34

Testing ..o 36

Refactoringcoiiii i i 36

Pairing 37

DeSION oo e 37
Design Source Fileso 37

Change Sets/Branches 37

Reviews i 38

Design Systemsciiii i s 38

Productivity Benefits 40

Deliverablesottt 40

ClosSiNng NOtES ... i e 41
An evolving Document i e 41
Aboutthe Authors i i e 41
Feedback 41
LiCENSE .t e 42

RedPenguin playbook 2

INTRODUCTION

This book is a guide for developing digital products following a proven procedure as well
as running an effective and low overhead product development process. It describes
what we do at RedPenguin and is based on experience we gained while working on digital

products for international clients in various industries.

Most teams working on digital products face the same challenges — be it an inability to
ship features effectively and with high quality, providing good insight into timelines and
meeting stakeholder's expectations or preventing technical debt to accumulate. We
believe that the techniques and practices we present in this book will prove helpful for
anyone developing digital products of any kind in any industry — whether you are a CTO
of an established company, a founder looking to set up their own product team, a

product manager, designer or developer.

The specific tool setup that works great for one team might not work as well for another
one. That is why instead of focussing on any precise software, we focus on the
underlying values and techniques that are independent of any particular tools or
organizational structure. Whether you are running a small team of only a few people or a
large organization, whichever of the plethora of applications for managing teams you are

using, you should be able to adopt the techniques presented in this book.

Organization of this Book

This book is currently organized into two main chapters:

RedPenguin playbook 3

1 "Digital Product Projects"

describes how digital products are built effectively and in a targeted manner that

involves all stakeholders

2 "Development Process"

describes how product teams run an efficient process that enables the team

rather than stand in its way

RedPenguin playbook

Part 1l

Digital Product
Projects

RedPenguin playbook 5

01
Digital Product Projects

Digital Product development is a complex procedure. Besides purely technical aspects,
transforming a potentially vague idea into a product that users can and will use or
solving a business problem through software also requires to take several other aspects
into account. In order to achieve an ideal result that best pursues a project's goals,
various groups with different backgrounds and motivations need to collaborate closely. A
clearly prescribed sequence of steps and actions to take in a particular order helps to
make this process as effective as possible while involving all stakeholders and their

individual expertise.

Digital product projects can be broken down into four main stages:

1 Product Strategy

identifying and understanding the goal of the project and the environment it

operates in

2 Product Design

conceptualizing a product that pursues the project's objective

3 Product Development

implementing the product and launching it
4 Evaluation

validating whether the product indeed achieves the objective

Building the entire product as one pass through all of these stages maximizes scope and
thus risk. Instead, we recommend splitting up the project into smaller units and passing

through the stages several times, once for each unit, incrementally building up the

RedPenguin playbook 6

product. We refer to the deliverable of each pass-through of all the stages as an
"increment" of the product. For the first increment, we recommend building only the

minimal set of functionality necessary to deliver value (the "Minimum viable product" or

MVP). Each subsequent increment adds a coherent set of functionality to the product

that extends it in a way that is meaningful to its users.
| < >] | J
O O

Q0A

Breaking down a project into an MVP and subsequent increments helps reduce scope and

complexity and develop the product in small and coherent steps

Software projects are highly dynamic. The bigger the scope and the complexity of a
project, the likelier it is to steer off track, resulting in delays and budget overruns. By
limiting the scope per increment, complexity and thus risk is minimized and also usable
versions of the product that provide value to users are available earlier in the process.
These early versions of the product can already be shared with users and be used to

acquire valuable feedback which might even result in a shift of focus or project direction.

Before work on the first increment of a product can be started, the project must be
kicked off and the infrastructure needs to be set up. These steps only happen once and

are not part of later iterations through the four main stages.

RedPenguin playbook

https://en.wikipedia.org/wiki/Minimum_viable_product

Kick-Off Meeting

Every project should start with a kick-off meeting assembling all project stakeholders -
ideally in person, otherwise in a video call. The main goal of this meeting is for everybody
involved to get to know each other and to acquire an understanding of everyone else's
roles, responsibilities and goals. The group of project stakeholders should be kept as
wide and open as possible and include everyone who has any interest or relation to the
project, even people that might not necessarily be involved in the project daily but still

have relevant perspectives that the project team should be aware of.

Setup

After kicking off the project, the infrastructure that is going to support the team needs to
be set up, as effective tooling is vital for effective collaboration among the stakeholders.

Ensure tooling is cloud-based and therefore persistent and traceable. The main tasks are:

e Deciding and setting up a source control system for maintaining the project's
source code; this would usually be a git-based system

e Deciding and setting up a system for maintaining and collaborating on design
source files; we recommend using software that allows for component-based
design, and a system that allows maintaining assets like source code with
branching, pull request and review mechanisms

e Deciding and setting up a system for maintaining and collaborating on documents
(e.g. feature concepts, etc.); this system should support versioning and
commenting for effective collaboration

e Setting up a shared communication channel that fosters traceable group
communication; while the particular tool of choice is not relevant, we advice
against relying on email and for using a realtime system instead

e Ensuring all project stakeholders have access to all of these tools and will receive

notifications when they are assigned tasks or are mentioned by others

Effective tooling and usage of it are critical for all teams, on-site or remote. All relevant
information, decisions and decision-making processes must at all times be accessible

and transparent to all stakeholders for effective collaboration.

RedPenguin playbook 8

Once the project has been kicked-off and infrastructure is set up, the team can

commence passing through the main stages starting with product strategy.

Product Strategy

In order to build an application that effectively achieves a particular objective, one must
first understand the subject matter and then clearly define the current state of the
situation. Next, the desired objective must be established to develop an effective strategy
for all subsequently taken actions. All project stakeholders need to work closely together

during this stage to identify answers to these questions:

e What exactly is it that is currently lacking or requires improvement (an example
could be customers having to call a company's sales representative to configure a
product specifically to their needs) and how does that manifest in the business?
(e.g. lost sales)

e Who is affected by the present problem and who is going to use the product that
is being built? (e.g. the project teams' own organization or its customers)

e What should be the effect on the business once the solution is in place? (e.g.

increased sales, reduced workload for the sales team, etc.)

The goal of the product strategy stage is to find answers to these questions that are
based on facts and knowledge rather than assumptions. The techniques for acquiring
said facts will vary with each new project and depend on the particular problem, the
respective industry and the time or budget constraints. We recommend using one or

several of the following techniques:

RedPenguin playbook 9

e Data analysis of existing data e.g. from CRM systems, event logs or analytics data
from existing web applications; utilizing these data sources often helps to create a
better understanding of the current situation and sometimes reveals that the
actual problem is different from what it seems; if none of this data is available,
think about whether it is possible to start collecting it in potentially already
existing systems

e User research: getting direct feedback from users of an existing product that is to
be replaced or potential users of an entirely new product is the best way to
understand their backgrounds, motivations and challenges

e Market analysis: besides understanding the future users of a digital product, it is
key to understand the market the product will operate in, its rules and limitations,
what competitors with similar products are offering and what the relevant trends

are

The product strategy stage will typically be conducted as one or several workshops in
which the project team has a facilitated discussion based on patterns and insights
uncovered through the research. It is critical to get all project stakeholders involved in
these workshops, in particular all of the business experts from various backgrounds like
marketing, sales, customer service, etc. All of these groups will have unique insights and
experiences that must all be heard in order to clearly understand the situation and define

the project's objective.

Mission Statement and KPIs

Based on the gathered facts, the project team will be able to define a high-level objective
for the project (e.g. a web application that allows customers to configure the company's
products according to their needs and order that configuration via the company's
website). That information should be written down in a short (aiming for about one
page) mission statement document to clearly express the project's scope and goals. We
also recommend defining one or more Key Performance Indicators (KPls) (e.g. "number
of sales via the website", "number of support requests from users") to quantify the
situation before and after the project for easier evaluation in later stages. If no data is
available for these KPIs, it might be necessary to set up additional tracking or conduct

research.

RedPenguin playbook 10

Personas

In addition to the mission statement, the project team also needs to identify potential
future users, along with their prior knowledge, skills, needs, and motivations concerning
the application. We recommend defining one or multiple personas (typical
representatives of the future user base) based on all acquired facts in order to gain a
good understanding of a product's users, which is a key prerequisite for developing an
application that effectively caters to their specific needs. Personas can be a useful tool for

aligning within a team and communicating who those people are.

J— A—_

A4

Defining Personas helps develop a better understanding of who a product is built for

In order to identify personas, all possible future users (as derived from the acquired data
and/or based on the business experts' experience) of the product are listed. For each of

those the following questions are answered:

e Why are they interested in the product and what problem are they trying to solve
with it?

e What previous experience do they have in relation to the product?

e What will make the solution appealing and valuable for them?

¢ What makes them unique compared to the other personas?

RedPenguin playbook 11

https://www.nngroup.com/articles/persona/

These users are then grouped by related concepts and patterns that emerge from the
answers to these questions. Each of the resulting clusters constitutes a persona that is
given a name so it can be easily referred to and described with its main characteristics in

a persona document (aiming for about one page per persona).

Make each persona memorable, associating them with characteristics of a real person
such as an image, name, age, attributes, desires, and behaviors. It is vital that personas
are not defined once and then forgotten, but rather that they are brought to the table
daily. Seeing a feature through the eyes of a persona creates empathy for the customer
segment that they represent, ensuring that we meet their needs as much as possible.
They become a valuable tool when they are integrated into the everyday decision-
making process (e.g. when prioritizing features, planning feature concepts, and recruiting

for usability testing).

Product Design

Once the strategy for the product has been established and is well understood and
agreed upon by all stakeholders, the next step is identifying the set of functionality to be
added in the respective increment of the product. If the product is going to replace an
existing system, the functionality provided by that system can be used as a reference. In
the first increment, we recommend starting with the minimal possible version of the
product, addressing the most basic needs of the project's personas (e.g. building only a
bare product configurator but no payment mechanism or order management system
yet). Subsequent increments will extend and optimize what was built in previous
increments with coherent blocks of functionality (e.g. adding a checkout flow with
payment, adding an order management system for the company's sales representatives,

etc.).

While applying a systematic approach for developing a coherent understanding of what
will be built, we recommend keeping the product design stage limited and not do
excessively detailed up-front design and specification. Detailed mockups tend to give a
false impression of a finished product even though it is basically impossible to cover
every possible aspect and prevent new challenges for particular features from being
uncovered in the development stage. Also, static mockups will never give as realistic an

impression for the final product as one will get from an actual application even if it starts

RedPenguin playbook 12

out with very limited functionality initially and is only built up incrementally over time.
Therefore we recommend aiming for a quick transition to the development stage, using

the real application to collect feedback and validate assumptions as early as possible.

Feature Concepts Workshop

In the Feature Concepts Workshop, the project team defines concrete concepts for
individual, coherent features of the application. The goal is to develop an understanding
of the structure of each feature's core functionality, the Ul elements the users interact

with and the transitions between individual states in the flow.
This workshop requires input from all project stakeholders:

e The business experts have unique expertise and understand best what goal a
particular feature enables the user to achieve

e Designers have the expertise to understand which interaction design lets the user
achieve the above goal in the most efficient way

e Engineers can assess different alternatives for implementing a feature for their

technical feasibility and associated effort

Features concepts capture features on a relatively high level of abstraction. They focus
on describing the functionality as such without going into details that would prescribe a

particular implementation or any concrete user interface.
For each feature, identify:

e The navigational structure: screens or pages, dialogues, menus, etc.

¢ Interactive elements: buttons, inputs, etc. that the user needs to trigger actions in
the flow or needs to acquire information that is relevant to them

e Flows: transitions between sections of the navigational structure that are

triggered by interactive elements

RedPenguin playbook 13

These conceptual descriptions of features are visualized using coarse diagrams (e.g.
hand-drawn marker sketches) including all of these identified pieces and the
relationships between them. During the workshop participants will discuss and
reconstruct these diagrams several times until an ideal solution emerges that all
stakeholders agree on. That final concept is then written down in a feature concept

document consisting of:

e A textual description of the feature, the need that it addresses and the solution
that it provides

e The persona(s) that the feature (mainly) caters to

e The low-fidelity diagram showing steps in the feature, focusing on functional

aspects and transitions between steps

O
e /\

Feature Concepts are described focussing on the flow and relevant interactive elements

rather than concrete visuals

Once a feature concept has been clearly described, revisit it and look for non-essential
aspects that are not strictly necessary for the feature to provide value as well as edge
cases that might not immediately be apparent. These will be noted in the feature concept
document as well and can be used as escape hatches later on to limit the scope and

effort for the feature as they can potentially be left out in a first implementation.

RedPenguin playbook 14

User Interface Design Foundation

The initial stage of user interface (Ul) design entails establishing a visual foundation that
can be applied consistently to the product. Take some time up-front to create brand

guidelines (if none exist) and establish variables such as typography, color, and spacing.

Next, create mid-fidelity wireframes of the first feature or coherent set of features to
convert the functionality to concrete Ul elements, but without potentially distracting
stylistic details of high-fidelity designs. Once the wireframes are agreed upon by all
relevant stakeholders, mockups of the feature can be created. Use the visual foundation
developed previously as a base to style the mockups, creating Ul components with future
reusability in mind. As the design grows, reuse components as often as possible to
ensure consistency and efficiency in the project. Later design steps will likely be focused
on smaller sets of Ul and build upon decisions and visual elements that were introduced

previously.

Establishing principles and guidelines on how to use components as well as the creation

of a Ul component library create the basis of a design system.

It's helpful to accept a bit of uncertainty and iterate on the real product rather than focus
too much on high-effort prototypes. The goal is to get something real in the hands of our
users as fast as possible to validate our ideas. Their insights inform the design, helping

evolve it iteratively according to their actual needs.

RedPenguin playbook 15

| — J - J

The first increment of a product will require creating wireframes and mockups for one of

the features in order to agree on a layout and visual style for the product

Increment Planning

Once the features are described in the product design stage, define a plan for the current
increment of the application. For each feature that is part of an increment, list which of
the non-essential aspects and edge cases will be included in the increment (e.g.
configuring products of the most successful category), which ones will not (e.g.
configuring products with little sales volume) and which ones will be moved to a later
increment in case the team is running out of time or budget (e.g. allowing customers to
see the status of past orders). Introducing these escape hatches allows the project team
to decide between implementing essential versions of more features versus covering
more non-essential aspects and edge cases for fewer features later in the process if time

should become scarce.

Once all stakeholders agree on the plan for the product increment, the feature concepts
together with included as well as excluded aspects and according edge cases are written
down in an increment plan document, which is used to estimate a rough timeline. That
plan is not irrevocable and neither is the estimate more than an assessment based on the

information available at the time. Previously unknown challenges will likely be uncovered

RedPenguin playbook 16

during product development and some details and implications will only be understood
once work on a particular feature has actually begun. Teams should in fact constantly
question assumptions and priorities and change the plan at any time they see necessary.
It is also possible at any time to go back and re-plan an increment, adding a different set
of features, include or exclude different aspects of them or even start over with the
product strategy or the product design if new business objectives are identified. The goal
of the increment planning is to get a common understanding of what value will be
delivered during the increment and how long that should roughly take (or what the
maximum available time and budget is) but not lock the team into a binding specification

and schedule that might have a short validity anyway.

Product Development

In the product development stage of a product increment, feature concepts are turned
into usable functionality in the application, iteratively building up the product over time.
During this process, each feature concept is broken down into fine-grained and more
detailed tasks which are then proceeded to be implemented by the project team (see
development process). Breaking down feature concepts is done in close collaboration
between engineers and designers with the business experts. They discuss individual
facets of features as well as different alternatives for designing and implementing those

along with the associated effort.

The project team will build slices of the system at once, including everything from the
design, the backend, and the frontend code of a particular feature so those slices can be
released as functional units that can be interacted with by all project stakeholders. Once
a slice is finished, it will be released to a staging system that is available for all project
stakeholders. All stakeholders should be encouraged to make active use of the staging
system to follow the project's progress and validate that the product is being built
according to their expectations. Feedback given by stakeholders will be collected by the
project team and addressed in tasks in a subsequent iteration of the product
development stage or moved into a later product increment depending on the respective

finding's priority.

RedPenguin playbook 17

Once a product increment is completed, the respective state of the product will be
released - ideally into a production environment - so real users can access the system
and deliver first-hand feedback.

Growing a Foundation

As more features are being completed and the product evolves, foundational elements
that will later be reused in other, similar contexts will be identified - both in the
application's codebase as well as in the visual design system. That way, each increment
of the application results in its foundation becoming broader, stronger and more refined,
resulting in increased effectiveness over time, decreasing effort per feature and

increasing planning reliability.

Evaluation

Every increment of the application that is completed and released should be evaluated
on whether the assumptions made in the product strategy and product design stages
proved themselves to be true and whether the project's objective has been achieved as
intended. Ideally, that evaluation can be conducted based on the interaction of real users
with the product, either based on data captured by an analytics system or ideally by
receiving feedback from users directly. Metrics should be collected for the KPIs defined in

the product strategy stage. By analyzing those metrics, the actual feedback can now be

compared with the initial expectations.

Iteration

Once an increment of the product is completed and released, the project team will go on
to build the next increment as long as there is functionality to add and aspects of the
product to improve. Depending on the learnings from the previous increment, it might be

necessary to go through the product strategy stage again, reconsider some of the

assumptions and adapt the project's objective. If this is found not to be necessary, the
product design stage can be entered directly to conceptualize, scope and implement the

next set of features, followed by executing that new plan, evaluating what was built, etc.

RedPenguin playbook 18

Part 2

Development
Process

RedPenguin playbook

02
Development Process

An effective development process supports the team rather than providing another
obstacle to work around. It does not introduce a set of formalities only for the sake of it
and favors communication between all contributors over top-down management. A
good process also ensures the right tasks are being worked on at the right time (and in
an appropriate manner) and provides a reasonable level of short term predictability. At

the same time, it remains flexible enough to adapt to unexpected events.

The RedPenguin development process distinguishes itself through certain characteristics

and underlying values:

e It ensures all project stakeholders are being heard and the project's priorities are
not being dictated by a single party.

e ltis designed to deliver high-quality results in a structured, comprehensible
manner.

e |t fosters open and replicable communication and sharing of know-how among
team members which is particularly important for remote teams.

e It puts a focus on planning and preparing all work carefully before getting started
with the actual implementation in order to ensure execution as smooth as
possible.

e It does not rely on any particular tools and works for projects and teams

regardless of the available infrastructure.

Iterations

Our development process is based on "iterations" in which a clearly defined set of tasks
is being worked on and ideally completed within the same iteration. Iterations share
similarity to what is often referred to as "sprints" but we made a conscious decision to

refrain from that terminology due to its negative connotations - after all, the goal is not to

RedPenguin playbook 20

rush work out but instead to build a project incrementally and iteratively at a sustainable
pace in order to ensure a high level of quality while avoiding the accumulation of
technical debt.

The concrete tasks for an iteration are identified, defined and prepared collaboratively
with all project stakeholders before the iteration starts. We do not recommend
maintaining a backlog filled with all tasks that eventually will need to be completed for a
particular project. Many of these tasks will become relevant only further out as the
project progresses and not be actionable at the time. Thus, these tasks are likely to
change anyway and preparing them early leaves teams with a large number of tasks that
end up never being tackled or only in a substantially different form so that they become
outdated or are even closed untouched. Instead, only the tasks that are relevant for the
upcoming iteration should be defined, prepared and then planned as those are well

understood and known to be needed at the time.

The main purpose of iterations is to set expectations on all sides and provide short-term
predictability and foresight for the stakeholders requiring it. lterations should be short
enough to remain predictable and long enough to supply enough time to finish
meaningful work — a length of 2 weeks typically achieves that best. The concrete
iteration length for a project must be defined when kicking off the project but can still be
adapted afterward. lterations are a team effort and should therefore be planned and
executed collaboratively with team members supporting each other to complete the

work as planned.

Roles

Our development process functions with flat project teams without dedicated project
managers. We believe the traditional project manager role with responsibilities focussed
around time and resource management is an organizational anti-pattern and often does

not provide the intended benefits but in fact has a negative impact:

RedPenguin playbook 21

e The project manager role can constitute an intermediary between project
stakeholders, intercepting direct communication and discussion between them.
That results in communication between stakeholders being less direct and
effective and can potentially even lead to details and nuance being lost in the
process. Sometimes blocking direct communication channels is even the intention
behind bringing in project managers in an effort to "shield" team members from
the direct influence of others. In these cases though, the project manager role only
covers a more fundamental problem that is really a dysfunctional project team.

¢ Intercepting or blocking direct communication between stakeholders via project
managers can also have another, potentially more substantial negative impact.
Since a project can only succeed when the different involved stakeholders work
together and each one's motivations and goals are respected and addressed, it is
vital for each stakeholder to understand and appreciate each other's viewpoints.
Many projects fail due to the disproportionate weight being assigned to one of
the stakeholder's interests and them running the entire project.

e |If project managers indeed assume a management role and have decisive
authority regarding priorities and deadlines etc., teams end up in a situation
where a party that is not actively contributing to the project is in a position to
make decisions and thus drive the project. That takes the decision making away
from the parties that have first-hand experience and insights and necessarily
leads to decisions that are not as well-informed as they could be and often, to

time and budget overruns and frustration among the team.

That said, we do support a project manager role that is more oriented towards acting as
a communication coach that supports the team by moderating meetings, introducing
workshop techniques, etc. We don't think "project manager" is a fitting term for such a

role though.

Instead of bringing in project managers, we recommend that for any given iteration one
of the team members will take on the role of "lteration Lead" . That person is responsible
for planning the iteration and ensuring smooth execution. It is conceptualized as a
rotating role so that every team member will assume it every once in a while (unless they

opt out of the rotation).

RedPenguin playbook 22

@a A

m_/

The iteration lead role rotates to a different project team member with every iteration

Making the iteration lead a rotating role ensures that all team members realize the
perspectives of all project stakeholders instead of getting stuck on their own which leads
to mutual trust and alignment of all stakeholders. It also gives everyone on the project
team the notion of ownership, responsibility and empowerment contrary to the feeling of
being mere executors of someone else's commands. This leads to an overall amplified

mindset for each individual on the team.

The main responsibility of the iteration lead is to consult with the business experts (and
all other relevant project stakeholders like marketing, designers or engineers) and
prepare the iteration. Once the iteration starts, any requested changes to it go through
the iteration lead for assessment (who might consult with other project stakeholders for

prioritization).

Iteration Preparation

The purpose of the iteration preparation phase is to define the tasks that are most
relevant to be worked on during the next iteration. The tasks assigned to an iteration
should reflect all the upcoming work, not only feature work and bug fixes - in particular,
they should reflect design, UX work, and purely technical tasks like refactorings as well.
The prepared tasks will then be presented to the team as part of the planning meeting
that kicks the iteration off. In order to prepare these tasks, the iteration lead synchronizes

with the business experts and other project stakeholders to:

RedPenguin playbook 23

¢ |dentify the most relevant tasks from each project stakeholder's perspectives; the
goal here is to find a good balance between work on features and other aspects
like bug fixes, refactoring, dependency updates, addressing tech debt in general
but also addressing other requirements for instance coming in from the marketing
department or other stakeholders

e Help the respective stakeholders translate features or other change requests into
actionable tasks; this might include discussing different options for implementing
a change along with their potential implications and related effort; the iteration
lead will often not possess the required knowledge to do that personally but will
then involve the respective experts in these conversations

e Uncover implications and hidden complexities in any of the tasks; while it is not
possible to think every task through completely from start to finish and eliminate
all inherent risks, we recommend trying to uncover as much of it as possible in the
preparation phase to reduce the likelihood of the team running into unforeseen
problems later on, potentially leading to delays and deadlocks then; the iteration
lead might delegate this work to the respective experts for a particular topic

e Prepare well-written issues for each of the identified tasks or spikes for tasks that

require more research in order to be ready to be addressed

e Make sure all of the preconditions are met in order to be able to work on each
issue, e.g. all necessary assets have been delivered, translations are ready or legal
implications have been checked, etc.

e Prioritize the issues so it is clear which ones need to be worked on first; in reality
priorities will often overlap and the expected effort, potential deadlines for
individual tasks, etc. also need to be taken into account when defining the order in

which tasks should be worked on

We use the term "issue" to refer to descriptions of tasks as they are keptin a
project's work management system of choice (e.g. Jira, GitHub, etc.). Other
common terms are "stories", "tickets" etc. Some tools also allow for structuring
issues hierarchically (e.g. with "epics"). We don't think the details of that or the
particular term used to refer to these items are relevant for a successful process
though.

RedPenguin playbook 24

The preparation phase of an iteration always overlaps with the execution of the previous
iteration - while one iteration is being executed, the next one is already being prepared
since it will start once the current one ends. lteration leads should typically plan a full
iteration period for preparation so that when one iteration starts, the iteration lead of the
following iteration starts their preparation. Preparing an iteration will of course typically
not require the iteration lead's entire time though but can usually be done at the same

time as also contributing to the current iteration.

—=0

e
o=T

)A — —
— |= O—
0: 0

o]

The iteration lead is responsible for collecting input from all stakeholders, assessing it for

consistency and availability of prerequisites and converting it to proper issues

Issues

Well-prepared issues are a key element of an effective development process. They
provide guidance for the project team's work, allow external parties non-involved with
the project to get an understanding of what is happening directly, and can serve as a

future reference to understand what was done in a project, and for which reasons.

RedPenguin playbook 25

Good issues with complete and detailed information are key to a successful project

There is a plethora of tools available for maintaining and collaborating on issues and this
process does not prescribe the usage of any particular one — all of the rules we present

here are independent of the concrete tooling used in a project.

Good issues aim to:

RedPenguin playbook 26

e Describe what is to be done and why, potentially accompanied by screenshots,
mockups/sketches or other visuals that help understand the desired outcome; it
might also be beneficial to add a summary of the issue's history, covering
previous related changes or alternative approaches that have been ruled out and
also providing the reasons for those changes

¢ Include reproduction steps if the issue describes a bug; ideally, those are
visualized with a screen recording or other media

e Detail concrete requirements that must be met and an overview of the changes to
be made to complete the issue; in order to prepare this list, the iteration lead
might need to partner with a team member more familiar with a particular part of
the codebase or feature

¢ Include all necessary materials that are needed for the issue; this could be visual
assets, links to online documentation for third party libraries or APIs or contact
details for external parties involved in an issue etc.

e Bring up any open questions that need to be answered or risks that have been
identified and might prevent the issue from being completed

e Be a discrete unit of work; issues should only contain related requirements and
ideally not represent more than a few days of work - larger issues can often be
broken down into multiple smaller ones, possibly even allowing for work to

happen simultaneously

Spikes

If a particular task is associated with too many open questions or uncertainties to be
converted into a well-prepared issue, it is preferable to plan a spike first in order to

resolve these open questions. Spikes should have:

e A description of the original requirement that will eventually be addressed in an
issue, potentially accompanied by screenshots, mockups/sketches or other visuals
that help understand the desired outcome

e A clear description of what the open questions are and how they are blocking an
issue from being created by adding too much risk or uncertainty

e Guidance on potential solutions that should be evaluated or references to
promising approaches

e A well-defined timebox, e.g. "spend max 2 days"

RedPenguin playbook 27

Iteration Planning

The result of the iteration preparation phase is a prioritized list of well-prepared issues
and spikes. This list of issues will then be presented to the team during the planning

meeting.

The iteration planning meeting is a joint meeting with the entire project team, the
business experts and all other stakeholders involved in the project. During the meeting,
the iteration lead presents each issue to the project team so that everyone acquires a

coherent understanding of what each issue is about and gets a chance to ask questions.

One goal of the iteration preparation phase is to eradicate uncertainties and open
questions around all issues. Instead, each issue should have been carefully examined for
open questions and risks and a high-level strategy for completing it should have been
defined. That way, the iteration planning meeting can be spent most efficiently and does
not end up being a loose team discussion in which tasks are examined collaboratively

which is a scenario many product teams are struggling with.

At the end of the planning meeting, the team collaboratively decides whether it can
reasonably work on and complete all of the issues that have been presented in the
meeting, plus past issues that are potentially moved over from the previous iteration after
having been reviewed. If the team considers the presented issues to be too much work
for the iteration, they collaboratively decide which ones are moved to a later iteration to
be considered again in the future. If any of the issues are found not to be ready to be
worked on (e.g. because dependencies of the issue are not ready), the issue is moved to

a later iteration as well.

The iteration, once planned, is not a binding agreement. It is still possible for all project
stakeholders to react to changes regarding features or priorities and the project team
cannot guarantee all planned issues to be completed by the end of the iteration as new
challenges might come up once work on an issue has started. The iteration plan is merely
a snapshot of the feature requests and priorities at the time it is made as well as a best-

effort estimate by the project team of which issues it thinks it can complete within the

RedPenguin playbook 28

iteration. Ideally though, an iteration remains unchanged once it has been planned to
enable smooth execution which also leads to increasingly predictable estimates as a

project progresses.

Iteration Execution

After the iteration has been planned, execution starts and the planned issues are worked

on based on their priority.

Once an issue has started to be worked on, the respective team member(s) will self-
assign it (not all issue trackers allow assigning issues to more than one person at a time
so if multiple engineers collaborate on an issue, they might have to choose one to assign
it to). Issues are only assigned once work on them actually starts — pre-assigning issues
during planning or afterward block these issues for everyone else to work on if the
originally assigned team members are busy with other tasks and do not actually work on
them. If an issue is being worked on by multiple team members sequentially (e.g. first the
designer for preparing visual elements, then the engineer for implementing those), the
latter team member will self-assign the issue once the former is done with their work.
Once an issue has been resolved via a pull request or if it is blocked, the engineer(s) will

self-assign another issue from the iteration backlog.

Although issues should be well-understood and well-prepared before they are even
planned for a particular iteration, for more complex issues it is often beneficial to break
them down into smaller, more concrete steps (which is often a great thingto do in a

pairing session) before starting implementation.

If there are any alterations requested to the iteration after the planning meeting (e.g. due
to unforeseeable changes to features or severe bugs popping up in production), all of
these potential modifications to the iteration are triaged by the iteration lead. They might
consult with the business experts or other project stakeholders to determine the validity
and priority of the incoming requests. If an issue is considered necessary to be added to
the iteration after the planning meeting, it can be added but another issue might have to

be removed from the iteration in its stead.

RedPenguin playbook 29

If an issue is blocked and cannot progress, the iteration lead is responsible for trying to
solve the impediment, potentially synchronizing with the business experts or other

project stakeholders that can help resolve the situation.

Likewise, if all issues in an iteration are completed early and there is no more work left to
do, the iteration lead will synchronize with the project stakeholders and the iteration lead
of the following iteration to discuss which issues should be added. Oftentimes that will

mean moving issues from the following iteration into the current one.

All discussions around an issue should happen on the particular issue's respective page
in the project management tool of choice. It is of course at times convenient to have
discussions in person or through online chat but even in those cases, a brief summary of
the discussed points and the outcome should be posted on the issue. This is a necessity
for distributed teams and allows everyone access to all of the context of a particular
issue at any time. Even teams that are not distributed benefit from this practice as all
information that is relevant to a particular issue is and remains available for everyone

interested.

Communication

Communication is key for successful project teams - be they distributed or not. For
communication to be beneficial for both the team culture as well as productivity, rather
than becoming a liability or cause of constant stress, all team members need to keep

some basic rules in mind:

RedPenguin playbook 30

e Be responsive: don't leave anyone hanging with unanswered questions or
requests. It goes a long way in keeping working relations positive, and
communication effective. Respond to online chat messages or mentions on issue
pages etc. within a reasonable time, ensure you have notifications set up properly
so you will see when somebody mentions you in a discussion or asks for your
feedback

e Take your focus time: while some people can respond to any notification that
reaches them immediately and still stay focused on the task they're working on,
this is not everyone's most effective way of working. Feel free to take your focus
time and switch off or ignore all notifications in order to focus on a particular task.
Just make sure to check whether anything urgent came up a few times a day. On
the flip side, when reaching out to a team member, be asynchronous as much as
possible. Give people time to finish what they're focused on, and to respond
properly. Very rarely is anything so urgent to warrant full interruption.

e Take advantage of rich media: screenshots, screen recordings, screen shares or
even hand-drawn sketches can contribute to a better understanding of what
you're trying to show or describe. A screen recording of a delivered feature is
always a hit. During calls, switch on your camera so people can see you - talking
face to face rather than with audio-only makes a big difference in communication

style.

Engineering

Although Engineering and Design work together closely at all times, some of the
techniques and practices differ simply because both professions deal with different
subjects. We recommend following several established practices that have been adopted

from the open source community for a smooth and effective engineering workflow.

Feature Branches and Pull Requests

All changes to a project's codebase are done in branches. No changes should ever be
committed to the master branch (or whatever the project's main branch is) directly.
There should generally be at least one branch per issue - for larger issues it often makes

sense to split separate steps into separate branches and merge them one after another.

RedPenguin playbook 31

All changes in a branch should also be related to the same "topic" - e.g one branch
should not address more than one issue or change entirely unrelated aspects of the

application.

If the testing setup, hosting environment and potentially other requirements present for
the delivered product should allow it, we recommend setting up continuous deployment
so changes get deployed to production as the respective pull request gets merged. If that
is not possible, we recommend setting up continuous deployment for a staging system at

least so all project stakeholders can follow the project's progress.

Commits

Just as all changes in a branch should be related to the same "topic", all changes within a
single commit should be related to the same step for implementing that topic. Each
commit should only do one "thing", ideally not touching on too many different parts of
the codebase. All commits should also have clear and concise commit messages that

make clear what the particular commit does.

Pull Requests

Branches are not merged back to the master branch directly but via pull requests (or
whatever similar mechanism the tools used in a particular project provide). Similarly to
issues, pull requests should have all the information necessary for everyone to
understand what they do, how they do it and why. In particular, good pull requests

should have:

RedPenguin playbook 32

https://git-scm.com/docs/git-commit#_discussion

e A high-level summary of the changes that the pull request contains that provides
the reader with a good overview without having to look at the actual code
changes

e Guidance for testing the added or changed functionality; this is helpful for the
reviewer, product or business experts looking at the pull request on a preview
system and a Quality Assurance (QA) team if one exists

e Before and after screenshots or even screen recordings in case of a visual change

e A reference to the issue the changes in the pull request are referring to; if the pull
request effectively closes an issue, most tools will automatically do that when the

pull request is merged if it contains a comment like "closes #" in the description

As with issues, all discussions around a particular pull request should happen on the pull
request's page. If discussions happen in person or via online chat, a summary should be
posted to the pull request so all information and context is accessible to everyone

interested at any time in one place.

It is perfectly fine to create pull requests early on while implementation is still ongoing
and they are not yet ready to be reviewed or merged. Doing so is a good way to get early
feedback and share the status of something with the rest of the team. Such pull requests
should be marked as "Work in progress" though - some tools have dedicated
mechanisms for doing so, in others that do not offer that, a good technique is prefixing
the pull request's title with something like [WIP]. Some tools will even block "Work in

progress' pull requests from being merged.

Preview Systems

In addition to setting up continuous deployment for deploying all changes that get

merged into a project's main branch to production automatically, we recommend creating
a mechanism that allows booting per-branch/pull request staging systems on demand
which we call preview systems. Preview systems are production-like environments that
run the entire application with a particular revision of the application's source code (that
of a pull request's underlying branch) with real production or production-like data. These
systems would ideally be automatically created for every new pull request (and
destroyed once the pull request was merged). A link to the respective system would be

added to the pull request automatically.

RedPenguin playbook 33

Preview systems are particularly helpful for letting non-technical stakeholders that
cannot run the entire application themselves inspect features or changes. That way they
can validate the respective features or changes and give feedback that engineers can
then address before releasing to production. Preview systems also allow sharing status
with external stakeholders that might not even have access to the application's sources

at all.

Setting up a preview system mechanism can sometimes be challenging and might
require a substantial amount of work. However, when taken into account early on in a
project and in particular if the project's infrastructure is containerized anyway, it is often
possible to set up preview systems with relatively little effort. Once the mechanism is set

up, the benefits easily justify even a substantial effort.

In case of projects that have been running for some time already, have lots of
dependencies, are not containerized and would thus be very hard to implement a
preview system mechanism for, we recommend at least setting up a shared sandbox
environment. That is not as valuable as a proper preview system mechanism as it will be
shared among all stakeholders and will hold changes from multiple pull requests as well
as be used by multiple stakeholders at the same time that might all be influencing each
other. However, it is a good first step and often much easier to set up than automated

preview systems.

Reviews

Pull requests are reviewed before they get merged back into the project's main branch;
pull requests that have not been reviewed should usually not get merged. For a pull

request to be ready for review though, it has to meet some pre-requisites:

e The branch has no conflicts with the target branch

e The changes in the branch are covered by appropriate tests and the Continuous
Integration (Cl) build is passing

e The pull request is not marked as "work in progress"

e The commit history of the pull request has been cleaned up, e.g. WIP commits

have been squashed, debug commits have been removed, etc.

RedPenguin playbook 34

When a pull request is ready for review, its author should actively ask for another team
member to review it - ideally via the tools used in the particular project if those support it
or over online chat, etc. If not we generally recommend applying rotating reviewer
assignments so that not all of the reviews depend on one or only a few people. This way,
more team members participate in the review process and thus understand different
parts of the codebase better. Reviews are a great tool for distributing knowledge about
the codebase among the project team which prevents essential knowledge from being
isolated to individual developers. Everyone asked for review should reply in a timely
manner - even if it's to ask for someone else to be chosen if they do not have the time to

do a thorough review.

Once the reviewer approved the changes and Cl passes, the pull request can be merged
by any team member including the pull request's author. If the original reviewer would
like a second review by another team member, potentially someone more familiar with
the aspects of the application that are being changed by the particular pull request, they
will ask for it. In case anything comes up in the review that cannot be resolved between
the reviewer and the author of the pull request, a third person should be broughtin to

resolve the deadlock.

Reviewing and potentially criticizing other people's work is a sensitive issue which is

why we recommend a set of rules to follow:

e Be polite: you are reviewing another person's work that they put time and energy
in - don't be dismissive and keep a friendly tone

e Be clear: don't be ambiguous but clearly address issues or modifications that
need to be revisited and changed again

e Be positive: while the review's main purpose is to identify mistakes or bad
patterns that are not caught by Cl, reviews are also a great opportunity to give
feedback on particularly good changes.

e Be helpful: if a pull request contains a particular change you don't think should be
merged, give the author some guidance by introducing an alternative to the

change that does not come with the same drawbacks

RedPenguin playbook 35

Testing

Testing is an integral part of all engineering work and a necessity for delivering high-
quality results that also do not deteriorate over time. Untested changes should generally
not be merged and not even be reviewed as one cannot know whether the code under
review actually works for all relevant scenarios. In fact, if there are no early tests, the
code will likely have to go through additional changes later on as soon as tests are being

added and bugs are being discovered in the process.

While different languages and frameworks provide different testing mechanisms, a good

approach generally is:

e Leveraging small and isolated tests (e.g. unit tests) for the majority of the test
cases including edge cases
e |Leveraging higher level tests (e.g. integration or acceptance tests) for ensuring

the main features and flows of an application work as expected

Continuous integration must mandatorily be set up for a project to be successful. While it
should always be possible to run tests locally, they also need to be run automatically for

every pull request and after each merge to the project's main branch.

Refactoring

Refactoring is an essential part of any software project. As requirements change and
frameworks and languages progress, code written in the past will eventually not be ideal
anymore in the present and future. Constant refactoring ensures the codebase does not
become stale and improves productivity overall by keeping technical debt at a minimum
and avoiding big, painful and risky rewrites that otherwise often become necessary

down the line.

When working on the codebase, all engineers should keep an eye open for parts that
need to be refactored and either do so immediately in case of simple changes, or bring

them up as individual issues for one of the next iterations.

RedPenguin playbook 36

Pairing

Pairing is a great way of spreading knowledge throughout the team, on-boarding new
team members or resolving blockers. We encourage project teams to make pairing an
integral part of their daily workflow, even across focus areas with e.g. engineers and

designers pairing when working on Ul changes.

Design

The design workflow greatly benefits from adopting established practices from software
engineering. A structured and organized approach fosters communication and quality

and is a necessary foundation for close collaboration between designers and engineers.

Design Source Files

Design source files should generally be managed like code, maintaining an authoritative
mainline and making changes in change sets that are only applied back to the mainline
once complete and reviewed. Source files can be maintained using a version control
system just like for the project's source code or in a separate system, depending on the

available tools and infrastructure.

Change Sets/Branches

Just like changes to a project's source code, no changes to design source files should
ever be applied directly to the mainline. Only after a set of changes has been reviewed
and deemed satisfactory, is it applied back as one discrete change. All individual changes
that are applied back together should be related to the same Ul element(s) or aspect of
the Ul (e.g. changing the color scheme once for all Ul elements). Once changes have
been applied back to the mainline, that fact should be noted in the issue describing the
work that was done in the change. The change should also be referenced in the issue if
the tools allow that, otherwise before/after images of the change should be attached to

the issue.

RedPenguin playbook 37

Reviews

When a design change is ready for review, its author should actively ask another team
member to review it - ideally via the tools used in the particular project if those support it
or over online chat etc. if not. Everyone asked for review should reply in a timely manner
- even if it's to ask for someone else to be chosen if they do not have the time to do a

proper review.

Once the reviewer has approved the changes, they can be applied by any team member
including the author of the change. If the original reviewer would like a second review by
another team member, potentially one more familiar with the aspects of the design that

are changed, they should ask for it. In case anything comes up in the review that cannot
be resolved between the reviewer and the author of the pull request, a third person

should be brought in to resolve the deadlock.

Changes to design sources need to be reviewed for:

e Completeness: does the change contain and/or cover all of the necessary and/or
affected elements and states?

e Consistency: does the change fit in with and leverage the project's design system
and overall visual direction?

e Feasibility: is the change possible to implement with the technology of choice

with a reasonable effort?

When reviewing design changes we recommend following the same set of rules as

when reviewing code changes.

Design Systems

All design work should eventually result in a design system evolving for the respective
project, independently of its nature or scope. The design system is a structured, multi-
level Ul framework where each layer builds on top of the elements defined in the

previous one, going from simple to complex, e.g.:

RedPenguin playbook 38

e Basic rules around font choices and color schemes build the foundation for the
design system

e Atomic elements like buttons, labels and inputs are the building blocks for all
higher-level elements

e Components are built on top of atomic elements and/or other components and
resemble groups of lower-level elements that function as a unit like search forms,
headers, etc.

e Components are arranged in particular ways to compose actual pages or screens

for an application

A design system will ensure consistency across all of the Ul of an application as well as
minimize the work necessary for extending the Ul over time as new elements will build

on top of existing ones.

Aa Bb Cc Dd Ee
Aa Bb Cc Dd Ee

i QO | &®PL=

[N _)

a O 0000

A design system is the visual foundation for a digital product

With every change that is applied, the design system is incrementally built up and
extended over time. New Ul elements that were not previously covered will reuse lower-
level elements where applicable and only introduce new concepts and patterns where no
such reusable elements are available. In cases where existing Ul elements turn out to not
be suited for previously uncovered cases, these elements might need to be changed,
potentially making changes in other, higher-level elements necessary as well. These

cascading changes ensure consistency across all of an application's UL.

RedPenguin playbook 39

Productivity Benefits

Design systems do not only support a consistent user interface but also directly improve
productivity. Since the application's Ul is based on a common set of rules, elements and
components, engineers can build new pages without needing additional guidance from
designers, simply by following the rules of and using the elements and components of
the design system. In most cases, elements and components defined in the design
system will even have direct counterparts in the application's source code. That way,
designers do not have to maintain designs for every individual page or screen of an
application. They only need to ensure the design system provides the rules and elements

to compose all of the application's UL.

Deliverables

Ideally, no dedicated design deliverables should be necessary and engineers should work
with the design source files directly and extract the information and assets they need
from those. Therefore, the design sources files should be managed in a way that makes
extraction of assets and necessary artwork easy for the engineers and designers who
will use them. This should include preparing and marking elements for export, including
proper offsets and intended appropriate file formats to reduce the necessity for

producing any special deliverables beyond the files themselves.

If any particular deliverables are required that the engineers can not extract from the
design source files directly, those deliverables should be attached to the respective issue

in the format best suited for the particular use case.

In order to demonstrate complex behavior or animation, narrow prototypes or videos
should be favored over text descriptions when possible to eliminate ambiguities and

misunderstandings.

RedPenguin playbook 40

CLOSING NOTES

We hope that this book served as an inspiration for addressing some of the problems
you and your team might be facing and rethinking the techniques you are practicing or

might be missing.

An evolving Document

This book is the result of experience we made over the course of many years working on
many different projects with clients around the world. We did not know everything we
present here up-front but only discovered and formalized the techniques as we went
through problems that we needed solutions for to ensure things would go smoother the
next time. That learning process will continue and as that happens will we update this
book. We might also add content on completely new topics that we are not covering at
allin the moment like hiring or effective and enjoyable communication.

Keep an eye on https://redpenguin.tech/playbook for updates.

About the Authors

RedPenguin is a digital product agency that crafts products for clients around the globe. We
have our roots in the open source community and create digital products for clients that

value code quality, robustness, dependability and honesty. This book was written
collaboratively by our team of experts in the fields of product strategy, product design as

well as backend and frontend engineering.

Feedback

If you have any feedback regarding the book and the techniques we present, we would
love to hear it. Are particular parts of the book not clear? Did we miss anything that is
critical to you and your team? Did you run into any problems while adopting our process

or had great success that you would share with us?

RedPenguin playbook 41

https://simplabs.com/playbook

Send us an email at_ hello@redpenguin.tech.

License

Copyright © 2011-2021 RedPenguin Ltd (https://redpenguin.tech); released under the
Attribution NonCommercial ShareAlike 3.0 Unported license.

RedPenguin playbook 42

mailto:playbook@simplabs.com
https://simplabs.com/

	Playbook
	Table of Contents
	Introduction
	Organization of this Book
	Part 1

	Digital Product Projects
	01
	Digital Product Projects
	Kick-Off Meeting
	Setup
	Product Strategy
	Mission Statement and KPIs
	Personas

	Product Design
	Feature Concepts Workshop
	User Interface Design Foundation
	Increment Planning

	Product Development
	Growing a Foundation

	Evaluation
	Iteration
	Part 2

	Development Process
	02
	Development Process
	Iterations
	Roles
	Iteration Preparation
	Issues
	Spikes

	Iteration Planning
	Iteration Execution
	Communication
	Engineering
	Feature Branches and Pull Requests
	Commits
	Pull Requests
	Preview Systems
	Reviews

	Testing
	Refactoring
	Pairing

	Design
	Design Source Files
	Change Sets/Branches
	Reviews

	Design Systems
	Productivity Benefits

	Deliverables

	Closing Notes
	An evolving Document
	About the Authors
	Feedback
	License

